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Summary. The inversion of cumulative distribution functions is an important topic
in statistics, probability theory and econometrics, in particular for computing per-
centage points of the distribution functions. The numerical inversion of these distri-
butions needs accurate starting values, and for the standard distributions powerful
asymptotic formulas can be used to obtain these values.. It is explained how a
uniform asymptotic expansions of a standard form representing several well-known
distribution functions can be used for the asymptotic inversion of these functions.
As an example we consider the inversion of the hyperbolic cumulative distribution
function.

1 Introduction

We consider functions of the form

Fa(η) =

√

a

2π

∫ η

−∞

e−
1

2
aζ2

f(ζ) dζ, (1)

where a > 0, η ∈ R, and f is analytic and real on R with f(0) = 1.
The special case f = 1 gives the normal distribution

P (η
√

a) =

√

a

2π

∫ η

−∞

e−
1

2
aζ2

dζ = 1
2erfc

(

−η
√

a/2
)

, (2)

where erfc z is the complementary error function

erfc z =
2√
π

∫

∞

z

e−t2 dt. (3)

As shown in [5], [6] and [3, Chapter 10] the incomplete gamma functions
and the incomplete beta function - which are the basic functions for several
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distribution functions - can be written in this form. In these references we have
used uniform asymptotic expansions for inverting these distribution functions
for large values of one or two parameters.

We explain how the incomplete gamma function

P (a, x) =
1

Γ (a)

∫ x

0

ta−1e−t dt (4)

can be written in the standard form (1). Let λ = x
a

and t = aτ . Then

Γ ∗(a)P (a, x) =

√

a

2π

∫ λ

0

e−a(τ−ln τ−1) dτ

τ
, (5)

where

Γ ∗(a) = Γ (a)a−aea

√

a

2π
= 1 + O(1/a). (6)

The transformation

τ − ln τ − 1 = 1
2ζ2, sign(τ − 1) = sign(ζ) (7)

gives the standard form

Γ ∗(a)P (a, x) =

√

a

2π

∫ η

−∞

e−
1

2
aζ2

f(ζ) dζ, f(ζ) =
1

τ

dτ

dζ
, (8)

with
λ − lnλ − 1 = 1

2η2, sign(λ − 1) = sign(η). (9)

2 Asymptotic representation of Fa(η)

By using Laplace’s asymptotic method (see [8, Chapter 2]) it is not difficult
to find the asymptotic estimates for large positive a and fixed values of η:

Fa(η) =



















−f(η)/(η
√

2aπ)e−aη2

[1 + O(1/a)], if η < 0;

1
2 + O(1/

√
a), if η = 0;

1 + O(1/a), if η > 0.

(10)

We see that the asymptotic behaviour of Fa(η) is completely different in
the three cases distinguished. Moreover, the asymptotic forms do not pass into
each other when η changes sign. By using an integration by parts procedure
we can obtain a single asymptotic representation of Fa(η) which is valid for
all η ∈ R. We write in (1) f(η) = [f(η) − f(0)] + f(0), where f(0) = 1, and
use (2). Then we obtain by repeating integration by parts steps:
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Fa(η) = 1
2erfc(−η

√

a/2)Fa(∞) +
e−

1

2
aη2

√
2πa

Sa(η), (11)

where, as a → ∞,

Fa(∞) ∼
∞
∑

n=0

An

an
, A0 = 1, Sa(η) ∼

∞
∑

n=0

Cn(η)

an
, (12)

uniformly with respect to η ∈ R. The coefficients follow from the following
recursive scheme. Let f0(η) = f(η). Then, for n = 0, 1, 2, . . ., define

fn+1(η) =
d

dη

fn(η) − fn(0)

η
, (13)

and we have

An = fn(0), Cn(η) =
fn(0) − fn(η)

η
. (14)

3 The asymptotic inversion method

Let p ∈ (0, 1) and a a large positive parameter. Then we are interested in the
value η that solves the equation

Fa(η) = Fa(∞) p. (15)

We use the representation in (11) and define a number η0 that solves the
reduced equation

1
2erfc(−η0

√

a/2) = p. (16)

Then for the requested value η we assume the expansion

η ∼ η0 +
η1

a
+

η2

a2
+

η3

a3
+ . . . , a → ∞, (17)

and try to find the coefficients η1, η2, η3, . . .. To obtain the ηj we can substitute
the expansion for η into (11) and use formal power series manipulations. For
the asymptotic inversion of the incomplete gamma and beta functions we have
used techniques based on differential equations; see [5], [6] and [3, Chapter 10].
In the next section we consider a different example.

The method based on differential equations runs as follows. From (1), (15)
and (16) we obtain

dp

dη0
=

√

a

2π
e−

1

2
aη2

0 ,
dp

dη
=

√

a

2π

f(η)

Fa(∞)
e−

1

2
aη2

, (18)

from which we obtain, upon dividing,

f(η)
dη

dη0
= Fa(∞)e

1

2
a(η2

−η2

0
). (19)
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Substituting (17) we obtain for η1 after perturbation analysis in first order
for large a

f(η0) = eη0η1 =⇒ η1 =
1

η0
ln f(η0). (20)

For higher order terms ηj , j ≥ 2, we need in (19) more coefficients in
the asymptotic expansion of Fa(∞) (see (12), (30) and (31)) and we have to
expand

f(η) = f(η0) + (η − η0)f
′(η0) + 1

2 (η − η0)
2f ′′(η0) + . . . . (21)

4 The hyperbolic cumulative distribution

The hyperbolic distribution was introduced in [2] and is given by

F (y) = C

∫ y

−∞

e−α
√

δ2+(x−µ)2+β(x−µ) dx, y ∈ R, (22)

where α > 0, |β| < α, δ and µ are arbitrarily real constants, and C is the
normalizing constant which gives F (∞) = 1. The value of C is given by

C =
ω

2αδ2K1(ω)
, ω = δ

√

α2 − β2, (23)

where K1(ω) denotes the modified Bessel function of the third kind of order 1
(see [1, Chapter 9] or [7, Chapter 9]).

4.1 A few transformations

We transform the function F (y) into the standard form. Because |β| < α, we
can write β = α tanh θ. We substitute in (22) x = µ+δ sinh(θ+ t), and obtain

F (y) =
1

2K1(ω)

∫ τ

−∞

e−ω cosh t cosh(t + θ)

cosh θ
dt, (24)

where ω is given in (23) and

τ = arcsinh
y − µ

δ
− θ, cosh θ =

α
√

α2 − β2
. (25)

Next we use the transformation

cosh t = 1 + 2ζ2, =⇒ t = 2arcsinh ζ, (26)

which gives

F (y) =
e−ω

K1(ω)

∫ η

−∞

e−
1

2
aζ2

f(ζ) dζ, (27)
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where
a = 4ω, η = sinh 1

2τ, (28)

and

f(ζ) =
1 + 2ζ2 + 2 tanh θζ

√

ζ2 + 1
√

ζ2 + 1
. (29)

We see that f(0) = 1 and it follows that we can write F (y) in the form

F (y) =
Fa(η)

Fa(∞)
, Fa(∞) =

√

2ω

π
eωK1(ω), (30)

where Fa(η) has the standard form (1). We have (see [1, Eq. 9.7.2])

Fa(∞) = 1 +
3

8ω
+ O(1/ω2), ω → ∞. (31)

It follows also that the inversion problem F (y) = p when a is large can be
written in the form (15). When we have found η from the expansion (17), we
compute τ = 2arcsinhη and finally (see (25))

y = µ + δ sinh(θ + τ), θ = arctanh
β

α
. (32)

4.2 A numerical example

When a is large the function Fa(η) approaches the unit step function and the
numerical inversion needs accurate starting values for, say, Newton’s method,
in particular when in (15) p is very small or very close to unity.

In [4] analytic approximations for these p−values are constructed of the
inverse function F−1 of F (y) given in (22). With these approximations a
numerical algorithm from Mathematica is used to compute the inverse F−1

from the differential equation satisfied by this function.
We demonstrate our approach by taking α = 5, β = 3, µ = 0 and δ =

1, 10, 100. These values give ω = 4, 40, 400 and a = 16, 160, 1600, respectively.
First we compute η0 from (16) and next η1 from (20), with f(η) given in

(29). The computed value η then follows from (17) (with two terms). Next we
compute τ = 2arcsinhη (see (28)), and with τ we can compute y by inverting
the second equation in (25) with θ = arctanh(β/α).

In Table 1 we give for several values of p and δ the computed value y,
and the relative error |F (y) − p|/p. We observe that the approximations of y

become indeed better when the large parameter a = 4δ
√

α2 − β2 increases.
Also, the approximations are better when p ∼ 1.
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Table 1. Values y and relative errors ∆ = |F (y) − p|/p of the inversion F (y) = p,
where F (y) is given in (22) for α = 5, β = 3, µ = 0, and several values of δ and p.

δ 1 10 100

p y ∆ y ∆ y ∆
0.0001 −1.1087 0.43 10−1 1.2413 0.82 10−3 53.110 0.14 10−4

0.1 0.1646 0.10 10−1 5.2635 0.17 10−3 67.317 0.12 10−4

0.2 0.4071 0.22 10−2 6.0654 0.22 10−3 69.985 0.11 10−4

0.3 0.5963 0.25 10−2 6.6627 0.24 10−3 71.931 0.95 10−5

0.4 0.7708 0.54 10−2 7.1866 0.24 10−3 73.608 0.83 10−5

0.5 0.9465 0.70 10−2 7.6884 0.23 10−3 75.188 0.72 10−5

0.6 1.1361 0.76 10−2 8.2023 0.21 10−3 76.779 0.60 10−5

0.7 1.3565 0.74 10−2 8.7664 0.18 10−3 78.496 0.49 10−5

0.8 1.6397 0.62 10−2 9.4462 0.14 10−3 80.523 0.36 10−5

0.9 2.0826 0.40 10−2 10.426 0.90 10−4 83.367 0.21 10−5

0.9999 5.8365 0.79 10−5 16.767 0.28 10−6 99.863 0.57 10−8
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